Areneruthenium complexes with S_2CPR_3 and trichlorostannate

Bernardo Alvarez, Daniel Miguel, Julio A. Pérez-Martínez and Víctor Riera

Departamento de Química Organometálica, Universidad de Oviedo, E-33071 Oviedo (Spain) (Received August 20, 1993)

Abstract

Complexes $[{(\eta^6\text{-}arene) \operatorname{RuCl}_2]_2}$ (arene = benzene, *p*-cymene or hexamethylbenzene), react with trialkylphosphine-carbon disulfide adducts, S₂CPR₃ (R = cyclohexyl, Cy; or isopropyl, ⁱPr), in refluxing ethanol in the presence of KPF₆ to afford cationic complexes $[(\eta^6\text{-}arene)\operatorname{Ru}(S_2CPR_3)Cl]PF_6$, which have been characterized by analytical and spectroscopic methods. These complexes react with SnCl₂ in CH₂Cl₂/THF to afford trichlorostannato-derivatives $[(\eta^6\text{-}arene)\operatorname{Ru}(S_2CPR_3)(\operatorname{SnCl}_3)]PF_6$ through insertion of SnCl₂ into the Ru-Cl bond.

Key words: Ruthenium; Tin; Arene

1. Introduction

In our studies of transition metal complexes with S_2CPR_3 , we have found that mononuclear complexes of manganese that contain one halide ligand and one chelating adduct, S_2CPR_3 , are convenient building blocks for the preparation of binuclear complexes [1,2]. This prompted us to undertake the preparation of similar complexes of other metals which could serve as starting materials for the synthesis of binuclear compounds.

We report here the preparation and characterization of a family of cationic complexes of ruthenium containing different arenes. η^6 -arene complexes of Ru(II) have attracted considerable attention [3] and their chemistry has been recently reviewed [4]. However, there are few examples of this class of compound with S-donor [5–8]. Most reactions leading to heterobinuclear complexes containing "Ru(η^6 -arene)" moieties take place with low yield. In contrast, we have reported [9] the preparation of [Ru(η^6 -C₆Me₆)-(S₂CPCy₃)Cl]PF₆ and of its use to prepare high yields of binuclear Ru-Mo and Ru-W complexes.

2. Results and discussion

The dimers $[{(\eta^6-\text{arene})\text{RuCl}_2}_2]$ (arene = benzene, **1a** [10]; *p*-cymene, $CH_{3}C_{6}H_{4}^{i}Pr-4$, **1b** [11]; hexamethylbenzene, C₆Me₆, 1c [11]), react with trialkylphosphine-carbon disulfide adducts, S_2CPR_3 (R = cyclohexyl, Cy; or isopropyl, ¹Pr), in a mixture of ethanol and CS₂ at reflux temperature in the presence of an excess of KPF₆, to afford red-brown solutions. After filtration to remove KCl and the excess of KPF₆, and evaporation of the solvents, mononuclear cationic complexes of formula $[(\eta^6 - \text{arene})\text{Ru}(\text{S}_2\text{CPR}_3)\text{Cl}]\text{PF}_6$ (2a-2f, see Scheme 1) are obtained in good yield. Analytical (see Experimental details), and spectroscopic data fully support the structures proposed in Scheme 1. All show a singlet in their ³¹P{¹H}NMR spectra in a region characteristic of phosphorus of S_2 CPR₃. As with other series of complexes, the resonances of those containing $P^{1}Pr_{3}$ appear at higher frequencies than those of PCy₃.

Several octahedral mononuclear complexes of ruthenium with S_2CPR_3 have been reported previously [12–14]. In all of them, the S_2CPR_3 is proposed to be bidentate and chelate. However, no ¹³C NMR data have been reported for these compounds. Since the discovery of the ability of S_2CPR_3 to act as $\eta^3(S,C,S')$ pseudo-allyl in mononuclear complexes [15–17], ¹³C

Correspondence to: Dr. D. Miguel.

Scheme 1.

NMR spectroscopy has proved to be useful to distinguish between the two (chelate and pseudo-allyl) coordination modes. We have obtained ¹³C NMR spectra for the complexes containing PCy₃ [2a, 2c and 2e], which are more soluble than their homologues with $P^{i}Pr_{3}$. In the spectra, the signal attributable to the central carbon of the S₂CPCy₃ appears as a doublet in the range 215-225 ppm expected for chelating S₂CPR₃ with J(PC) of ca. 35 Hz. These data are additional support for the structures proposed in Scheme 1.

Reaction of complexes 2a-2f with an excess of tin(II) chloride in a mixture of CH_2Cl_2 and THF produces trichlorostannate derivatives through the insertion of $SnCl_2$ into the Ru–Cl bond. After appropriate workup (see Experimental details), these complexes can be isolated as hexafluorophosphate salts [(η^6 -arene)

TABLE 1. "P{'H} and 'H NMR data " for the new complexe
--

Compound	³¹ P(¹ H) ^b	¹ H ^c
$\frac{1}{28 \left[(n^6 - C_4 H_4) Ru(S_2 CPC v_2) Cl \right] PF_6}$	33.2	5.95 [s, 6H, C ₆ H ₆], 2.58 [m, 3H, C ¹ H of Cy], 1.90–1.18 [m, 30H, CH ₂ of Cy]
2h $[(\pi^6-C_cH_c)Ru(S_2CP^iPr_a)Cl]PF_c^d$	43.5	6.04 [s, 6H, C ₆ H ₆], 2.99 [m, 3H, CH of ⁱ Pr], 1.47 [dd, $J(PH) = 17$ Hz,
		$J(HH) = 7 Hz, 18H, CH_3 \text{ of } {}^{i}Pr]$
$2c \left[\left(n^{6} - p - cvmene \right) Ru(S_{2} CPCv_{2}) Cl PF_{6} \right]$	33.3	5.95, 5.71 [AB, $J = 6$ Hz, 4H, C ₆ H ₄], 2.89 [m, 1H, p-CH ₃ C ₆ H ₄ CH(CH ₃) ₂],
		2.67 [m, 3H, $C^{1}H$ of PCy ₃], 2.36 [s, 3H, $CH_3-C_6H_4$], 1.95 to 1.33 [m, br,
		30H, CH_2 of PCy ₂], 1.32 [d, $J(HH) = 7$ Hz, 6H, p -CH ₃ C ₆ H ₄ CH(CH_3) ₂]
2d $[(n^6-n-cymene)Ru(S_2CP^iPT_2)C]]PF_{4}$	42.5	5.94, 5.71 [AB, $J = 6$ Hz, 4H, C ₆ H ₄], 3.01 [m, 3H, CH of ¹ Pr], 2.89 [m, 1H,
		$p-CH_3C_6H_4CH(CH_3)_2$, 2.37 [s, 3H, $p-CH_3C_6H_4CH(CH_3)_2$], 1.49 [dd,
		$J(PH) = 17$ Hz, $J(HH) = 7$ Hz, 18H, CH_3 of ^{1}Pr], 1.33 [d, $J(HH) = 7$ Hz,
		6H, p-CH ₃ C ₆ H ₄ CH(CH ₃) ₂]
$2e [(n^6-C_{\ell}Me_{\ell})Ru(S_{2}CPCy_{2})Cl]PF_{\ell}^{d}$	33.9	2.96 [m, 3H, C^1H of Cy], 2.27 [s, 18H, CH_3 of C_6Me_6],
		1.97–1.30 [m, 30H, CH ₂ of Cy]
$2f[(\pi^6-C_4Me_4)Ru(S_2CP^iPr_3)Cl]PF_6$	42.2	3.03 [m, 3H, CH of 'Pr] 2.25 [s, 18H, CH ₃ of C ₆ Me ₆], 1.49 [dd,
		$J(PH) = 17 Hz$, $J(HH) = 7 Hz$, 18H, CH_3 of ⁱ Pr]
$3a[(n^6-C_4H_4)Ru(S_3CPCy_3)(SnCl_3)]PF_6$	33.4 (123)	6.38 [s, 6H, C ₆ H ₆], 2.73 [m, 3H, C ¹ H of Cy], 2.12–1.14 [m, 30H, CH ₂ of Cy]
3b $[(\eta^6 - C_6 H_6) Ru(S_2 CP^1 Pr_3)(SnCl_3)] PF_6^d$	47.9 (128)	5.59 [s, 6H, C_6H_6], 3.33 [m, 3H, CH of ¹ Pr], 1.53 [dd, J(PH) = 17 Hz,
		$J(HH) = 7 Hz, 18H, CH_3 \text{ of } {}^{i}Pr]$
$3c [(\eta^6-p-cymene)Ru(S_2CPCy_3)(SnCl_3)]PF_6$	32.6 (123)	6.59, 6.45 [AB, $J = 6$ Hz, 4H, C ₆ H ₄], 2.89 [m, 1H, p-CH ₃ C ₆ H ₄ CH(CH ₃) ₂],
		2.67 [m, 3H, C^1H of PCy ₃], 2.36 [s, 3H, $CH_3-C_6H_4$], 1.95 to 1.33 [m, br,
		30H, CH_2 of PCy ₃], 1.32 [d, $J(HH) = 7$ Hz, 6H, p -CH ₃ C ₆ H ₄ CH(CH ₃) ₂]
3d $[(\eta^6-p-cymene)Ru(S_2CP^iPr_3)(SnCl_3)]PF_6$	42.1 (127)	6.33, 6.26 [AB, $J = 6$ Hz, 4H, C ₆ H ₄], 3.05 [m, 3H, CH of ¹ Pr], 2.80 [m, 1H,
··· · · · · ·		<i>p</i> -CH ₃ C ₆ H ₄ CH(CH ₃) ₂], 2.33 [s, 3H, <i>p</i> -CH ₃ C ₆ H ₄ CH(CH ₃) ₂], 1.51 [dd,
		$J(PH) = 17 Hz$, $J(HH) = 7 Hz$, 18H, CH_3 of 'Pr], 1.28 [d, $J(HH) = 7 Hz$,
		$6H, p-CH_{3}C_{6}H_{4}CH(CH_{3})_{2}]$
$3e [(\eta^6 - C_6 Me_6) Ru(S_2 CPCy_3)(SnCl_3)]PF_6^d$	35.7 (125)	3.12 [m, 3H, C^1H of Cy], 2.50 [s, 18H, CH_3 of C_6Me_6],
		2.31–1.43 [m, 30H, CH ₂ of Cy]
$3f[(\eta^6-C_6Me_6)Ru(S_2CP^iPr_3)(SnCl_3)]PF_6$	43.4 (125)	3.41 [m, 3H, CH of 'Pr], 2.47 [s, 18H, CH_3 of C_6Me_6], 1.56 [dd,
		$J(PH) = 17 Hz, J(HH) = 7 Hz, 18H, CH_3 \text{ of } Pr]$

^a CD_2Cl_2 solutions unless otherwise stated. ^b Chemical shifts in δ (ppm) from external H_3PO_4 . For complexes 3a-3f, J(Sn-P) is given in Hz, in parentheses. ^c Chemical shifts in δ (ppm) from internal SiMe₄. ^d In acetone-d₆.

Ru(S₂CPR₃)(SnCl₃)]PF₆ (**3a-3f**, see Scheme 1). The structures depicted in the Scheme are fully supported by analytical and spectroscopic data. The presence of the tin-containing ligand is unambiguously demonstrated by a set of satellites with ${}^{4}J(P-Sn) = 125 \pm 3$ Hz in the ${}^{31}P$ NMR spectra of all the complexes of the series.

We have recently reported several examples of transition metal-tin complexes containing S_2CPR_3 [18,19]. In one case, the S_2CPR_3 bridges between the two metal atoms, displaying $\eta^3(S,C,S')$; $\eta^2(S,S')$ coordination [18]; in the other, there is no interaction between the chelating S_2CPR_3 and the tin atom [19]. In the present case, the ¹³C NMR spectra of complexes containing SnCl₃ (**3a**, **3c** and **3e**) show the doublet (with $J(PC) = 31 \pm 2$ Hz), in the range expected for chelating S_2CPR_3 . This allows us to rule out the involvement of the central carbon of the S_2CPR_3 in the bond with the metals, and supports the structures proposed for **3a-3f** in Scheme 1 with chelate S_2CPR_3 .

Insertion of SnCl_2 into Ru–Cl bonds has been used to prepare octahedral carbonyl complexes of ruthenium [20]. However, as far as we know, there is only one example of such an insertion in η^6 -arene complexes of ruthenium [21^{*}].

3. Experimental details

All reactions were carried out in dry solvents under dinitrogen. Literature procedures for the preparation of starting materials are quoted in each case. Reagents were purchased and used without purification unless otherwise stated. ¹H, ³¹P, and ¹³C NMR spectra were recorded on a Bruker AC-300 spectrometer. Elemental analyses were carried out on a Perkin-Elmer 240B analyzer.

3.1. $[Ru(\eta^6 - C_6H_6)(S_2CPCy_3)Cl]PF_6$, (2a)

A mixture of [{Ru(η^6 -C₆H₆)Cl₂J₂] [10] (0.13 g, 0.25 mmol), S₂CPCy₃ (0.18 g, 0.5 mmol), KPF₆ (0.5 g, an excess), and CS₂ (1 cm³, an excess) was heated under reflux in ethanol (20 cm³) for 4 h, and then the solvents were evaporated to dryness *in vacuo*. The residue was extracted with CH₂Cl₂ (3 × 10 cm³) and the extracts were filtered. Slow evaporation *in vacuo* gave brown microcrystals of **2a**, which were washed with Et₂O (3 × 15 cm³). Yield 0.34 g, 94%. (Anal. Found: C, 42.02; H, 5.40. C₂₅H₃₈ClF₆P₂RuS₂ calc.: C, 41.00; H, 5.36%.

3.2. $[Ru(\eta^6 - C_6H_6)(S_2CP^iPr_3)Cl]PF_6$, (2b)

Compound **2b** was prepared as described for **2a** from [{Ru(η^6 -C₆H₆)Cl₂}₂] [10] (0.13 g, 0.25 mmol), PⁱPr₃ (80 μ l, 0.5 mmol), KPF₆ (0.5 g, an excess), and CS₂ (1 cm³, an excess); in ethanol (20 cm³). Yield 0.26 g, 88%. (Anal. Found: C, 32.20; H, 4.35. C₁₆H₂₆-ClF₆P₂RuS₂ calc.: C, 32.30; H, 4.41%).

3.3. $[Ru(\eta^{6}-p-cymene)(S_{2}CPCy_{3})Cl]PF_{6}, (2c)$

Compound **2c** was prepared as described for **2a** from $[\{Ru(\eta^6-p-cymene)Cl_2\}_2]$ [11], (0.15 g, 0.25 mmol), S₂CPCy₃ (0.18 g, 0.5 mmol), KPF₆ (0.5 g, an excess), and CS₂ (1 cm³, an excess); in ethanol (20 cm³). Yield 0.36 g, 92%. (Anal. Found: C, 45.22; H, 6.10. C₂₉H₄₇-ClF₆P₂RuS₂ calc.: C, 45.10; H, 6.13%).

TABLE 2. ¹³C{¹H} NMR Data for the complexes with S₂CPCy₃ ^a

Compound	S ₂ C-P ^b	Arene	Cyclohexyl
2a	224.2 [d (31)]	88.4 [s, C ₆ H ₆]	30.6 [d, (36), C ¹], 27.0 [s, C ² and C ⁶]
0.	202.2 [1(24)]		26.6 [d, (13), C^3 and C^5], 25.3 [s, C^4]
2c	222.3 [d (31)]	108.6 and 104.9 [s, C^{1} and C^{4} of <i>p</i> -cymene]	30.6 [d (36), C^1], 26.7 [d (12), C^3 and C^5]
		87.0 and 85.9 [s, C^2 and C^6 , C^3 and C^5 of <i>p</i> -cymene], 32.3 [s, $C(CH_3)_2$], 22.9 [s, $C(CH_3)_2$],	26.3 [s, C^2 and C^6], 25.2 [s, C^4]
•		$19.5[8, C_6H_4 - CH_3].$	
2e 2	217.6 [d (31)]	97.7 [s, $C_6(CH_3)_6$], 16.7 [s, $C_6(CH_3)_6$]	30.5 [d (37), C^1], 26.8 [d (12), C^3 and C^5]
			26.4 [d (3), C^2 and C^6], 25.4 [s, C^4]
3a	218.4 [d (33)]	90.8 [s, $C_6 H_6$]	31.7 [d (36), C^1], 27.0 [s, C^2 and C^6]
			$269[d(13) C^3 and C^5] 255[s C^4]$
3c	213.8 [d (33)]	114.2 and 105.9 [s, C^1 and C^4 of <i>p</i> -cymene]	$30.6 [d (36), C^{1}] 26.7 [d (12), C^{3} and C^{5}]$
	• • /•	897 and 896 [s C^2 and C^6 C^3 and C^5 of	26.3 [a (20), C], 20.7 [a (12), C] and C]
		p (groups) 22.2 [p (CH(CH)) 1.22.2	20.3 [s, C and C], 25.2 [s, C]
		p-cylinenej, 52.5 [s, CH(CH ₃) ₂], 25.5	
		$[s, CH(CH_3)_2], 19.9 [s, C_6H_4 - CH_3].$	
3e [°]	217.2 [d (30)]	101.7 [s, $C_6(CH_3)_6$], 16.8 [s, $C_6(CH_3)_6$]	30.7 [d (36), C^1], 26.0 [s, C^2 and C^6]
			25.9 [d (13), C^3 and C^5], 24.8 [s, C^4]

^a CD₂Cl₂ solutions unless otherwise stated. Chemical shifts in δ (ppm) from internal SiMe₄. ^b J(PC) in Hz in parentheses. ^c In acetone-d₆.

3.4. $[Ru(\eta^6-p-cymene)(S_2CP^iPr_3)Cl]PF_6$, (2d)

Compound **2d** was prepared as described for **2a** from $[{Ru(\eta^6-p-cymene)Cl_2}_2][11], (0.15 g, 0.25 mmol), PⁱPr₃ (80 <math>\mu$ l, 0.5 mmol), KPF₆ (0.5 g, an excess), and CS₂ (1 cm³, an excess); in ethanol (20 cm³). Yield 0.28 g, 86%. (Anal. Found: C, 36.78; H, 5.36. C₂₀H₃₅ClF₆P₂RuS₂ calc.: C, 36.84; H, 5.41%).

3.5. $[Ru(\eta^6 - C_6 Me_6)(S_2 CPCy_3)Cl]PF_6, (2e)$

Compound **2e** was prepared as described for **2a** from $[{\text{Ru}(\eta^6-\text{C}_6\text{Me}_6)\text{Cl}_2}_2]$ [11] (0.17 g, 0.25 mmol), S₂CPCy₃ (0.18 g, 0.5 mmol), KPF₆ (0.5 g, an excess), and CS₂ (1 cm³, an excess); in ethanol (20 cm³). Yield 0.38 g, 95%. (Anal. Found: C, 46.35; H, 6.26. C₃₁H₅₁ClF₆P₂RuS₂ calc.: C, 46.52; H, 6.42%).

3.6. $[Ru(\eta^{6}-C_{6}Me_{6})(S_{2}CP^{i}Pr_{3})Cl]PF_{6}, (2f)$

Compound **2f** was prepared as described for **2a** from $[{Ru(\eta^6-C_6Me_6)Cl_2}_2]$ [11] (0.17 g, 0.25 mmol), PⁱPr₃ (80 µl, 0.5 mmol), KPF₆ (0.5 g, an excess), and CS₂ (1 cm³, an excess); in ethanol (20 cm³). Yield 0.31 g, 92%. (Anal. Found: C, 38.96; H, 5.70. C₂₂H₃₉ClF₆P₂RuS₂ calc.: C, 38.85; H, 5.78%).

3.7. $[Ru(\eta^6-C_6H_6)(S_2CPCy_3)(SnCl_3)]PF_6, (3a)$

Compound $[Ru(\eta^6-C_6H_6)(S_2CPCy_3)CI]PF_6$ (2a) (0.14 g, 0.20 mmol) and SnCl₂ (0.05 g, 0.25 mmol) were stirred in a mixture of CH₂Cl₂ (10 cm³) and THF (10 cm³) for 1 h, and the resulting solution was filtered. Slow evaporation *in vacuo* gave red-brown microcrystals of **3a**, which were washed with Et₂O (2 × 20 cm³). Yield 0.17 g, 92%. (Anal. Found: C, 32.96; H, 4.30. C₂₅H₃₈Cl₃F₆P₂RuS₂Sn calc.: C, 33.19; H, 4.23%).

3.8. $[Ru(\eta^{6}-C_{6}H_{6})(S_{2}CP^{i}Pr_{3})(SnCl_{3})]PF_{6}, (3b)$

Compound **3b** was prepared as described for **3a** from $[Ru(\eta^6-C_6H_6)(S_2CP^iPr_3)Cl]PF_6$, (**2b**) (0.12 g, 0.20 mmol), and $SnCl_2$ (0.05 g, 0.25 mmol). Yield 0.14 g, 87%. (Anal. Found: C, 24.66; H, 3.24. $C_{16}H_{26}$ $Cl_3F_6P_2RuS_2Sn$ calc.: C, 24.50; H, 3.34%).

3.9. $[Ru(\eta^6-p-cymene)(S_2CPCy_3)(SnCl_3)]PF_6$, (3c)

Compound **3c** was prepared as described for **3a** from $[Ru(\eta^6-p-cymene)(S_2CPCy_3)Cl]PF_6$ (**2c**) (0.15 g, 0.20 mmol), and SnCl₂ (0.05 g, 0.25 mmol). Yield 0.17 g, 90%. (Anal. Found: C, 36.45; H, 4.86. C₂₉H₄₇Cl₃ F₆P₂RuS₂Sn calc.: C, 36.21; H, 4.93%).

3.10. $[Ru(\eta^{6}-p-cymene)(S_{2}CP^{i}Pr_{3})(SnCl_{3})]PF_{6}, (3d)$

Compound **3d** was prepared as described for **3a** from $[Ru(\eta^6-p-cymene)(S_2CP^iPr_3)Cl]PF_6$ (**2d**) (0.13 g, 0.20 mmol), and $SnCl_2$ (0.05 g, 0.25 mmol). Yield 0.15 g, 88%. (Anal. Found: C, 28.58; H, 4.26. $C_{20}H_{35}Cl_3$ $F_6P_2RuS_2Sn$ calc.: C, 28.51; H, 4.31%).

3.11. $[Ru(\eta^6 - C_6 Me_6)(S_2 CPCy_3)(SnCl_3)]PF_6$, (3e)

Compound 3e was prepared as described for 3a from $[Ru(\eta^6-C_6Me_6)(S_2CPCy_3)Cl]PF_6$ (2e)(0.16 g, 0.20 mmol), and SnCl₂ (0.05 g, 0.25 mmol). Yield 0.19 g, 94%. (Anal. Found: C, 38.02; H, 5.03. C₃₁H₅₁Cl₃ F₆P₂RuS₂Sn calc.: C, 37.61; H, 5.19%).

3.12. $[Ru(\eta^6 - C_6 Me_6)(S_2 CP^i Pr_3)(SnCl_3)]PF_{6}, (3f)$

Compound **3f** was prepared as described for **3a** from $[Ru(\eta^6-C_6Me_6)(S_2CP^1Pr_3)Cl]PF_6$ (**2f**) (0.14 g, 0.20 mmol), and SnCl₂ (0.05 g, 0.25 mmol). Yield 0.16 g, 90%. (Anal. Found: C, 30.52; H, 4.63. $C_{22}H_{39}Cl_3F_6P_2RuS_2Sn$ calc.: C, 30.38; H, 4.52%).

Acknowledgments

We thank the Spanish Dirección General de Investigación Científica y Técnica (DGICYT, Project PB91-0678), FICYT, and Metalúrgica del Nalón S.A. for financial support. We also thank Fundación Santa María and FICYT for grants (to B.A. and J.A. P-M.).

References

- 1 D. Miguel, J.A. Pérez-Martínez, V. Riera and S. García-Granda, J. Organomet. Chem., 420 (1991) C12.
- 2 D. Miguel, J.A. Pérez-Martínez, V. Riera and S. García-Granda, Organometallics, 12 (1993) 1394.
- 3 M.A. Bennet, M.I. Bruce and T.W. Matheson, in G. Wilkinson, F.G.A. Stone and E.W. Abel, (eds.), *Comprehensive Organometallic Chemistry*, Vol. 4, Pergamon, Oxford, 1982, p. 796.
- 4 H. LeBozec, D. Touchard and P. Dixneuf, Adv. Organomet. Chem., 29 (1989) 163.
- 5 D.R. Robertson and T.A. Stephenson, J. Chem. Soc., Dalton Trans., (1978) 486.
- 6 H.T. Schacht, R.C. Haltiwanger and M. Rakowski DuBois, Inorg. Chem., 31 (1992) 1728.
- 7 J.R. Dilworth, Y. Zheng, S. Lu and Q. Wu, Inorg. Chim. Acta, 194 (1992) 99.
- 8 W.S. Sheldrick and C. Landgrafe, Inorg. Chim. Acta, 208 (1993) 145.
- 9 J. Cuyás, D. Miguel, J.A. Pérez-Martínez, V. Riera and S. García-Granda, *Polyhedron*, 11 (1992) 2713.
- 10 M.A. Bennet and A.K. Smith, J. Chem. Soc., Dalton Trans., (1974) 233.
- 11 M.A. Bennet, T.N. Huang, T.W. Matheson and A.K. Smith, Inorg. Synth., 21 (1982) 74.
- 12 T.R. Gaffney and J.A. Ibers, Inorg. Chem., 21 (1982) 2062.
- 13 P.W. Armit, W.J. Sime, T.A. Stephenson and L. Scott, J. Organomet. Chem., 161 (1978) 391.
- 14 A.L. Hector and A.F. Hill, J. Organomet. Chem., 447 (1993) C7.
- 15 E. Carmona, E. Gutierrez-Puebla, A. Monge, P.J. Pérez and L. Sánchez, *Inorg. Chem.*, 28 (1989) 2120.
- 16 E. Carmona, A. Galindo, A. Monge, M.A. Muñoz, M.L. Poveda and C. Ruiz, *Inorg. Chem.*, 29 (1990) 5074.
- 17 A. Galindo, E. Gutierrez-Puebla, A. Monge, M.A. Muñoz, A. Pastor, C. Ruiz and E. Carmona, J. Chem. Soc., Dalton Trans., (1992) 2307.
- 18 D. Miguel, J.A. Pérez-Martínez, V. Riera and S. García-Granda, Angew. Chem. Int. Ed. Engl., 31 (1992) 76.

- 19 B. Alvarez, D. Miguel, J.A. Pérez-Martínez, V. Riera and S. García-Granda, J. Organomet. Chem., 427 (1992) C33.
- 20 M.I. Bruce, in G. Wilkinson, F.G.A. Stone, and E.W. Abel (eds.), Comprehensive Organometallic Chemistry, Vol. 4, Pergamon, Oxford, 1982, p. 909.
- 21 H. Brunner and R.G. Gastinger, J. Organomet. Chem., 145 (1978) 365; Reaction of $SnCl_2$ with $[Ru(\eta^6-C_6H_6)(CH_3){Ph_2PNHCH}(CH_3)Ph]$ gave the corresponding $SnCl_3$ complex, which was subjected to an X-ray determination: J.D. Korp and I. Bernal, Inorg. Chem., 20 (1981) 4065.